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State-Feedback Control of Longitudinal Combustion Instabilities

Vigor Yang,* Alok Sinha,* and Youn-Tih Fungt
Pennsylvania State University, University Park, Pennsylvania 16802

Active control of longitudinal pressure oscillations in combustion chambers has been studied theoretically by
means of a digital state-feedback control technique. The formulation is based on a generalized wave equation
that accommodates all influences of combustion, mean flow, unsteady motions, and control actions. Following
a procedure equivalent to the Galerkin method, a system of ordinary differential equations governing the
amplitude of each oscillatory mode is derived for the controller design. The control actions are provided by a
finite number of point actuators, with instantaneous chamber conditions monitored by multiple sensors. Several
important control aspects, including sampling period, locations of sensors and actuators, controllability, and
observability, have been investigated systematically. As a specific example, the case involving two controlled and
two residual (uncontrolled) modes is studied.

Nomenclature
A = continuous-time system matrix
a = speed of sound in mixture
B = continuous-time input matrix
C = output matrix
G - controllability matrix
Dni = linear parameters, Eq. (16)
Eni - linear parameters, Eq. (16)
eN = estimation error
F = discrete-time system matrix
/ = source terrns for boundary conditions
G = discrete-time input matrix
h - source terms in wave equation
J — objective function, Eq. (44)
K = number of total modes
JC - system-feedback gain matrix
kn — wave number
L - tength of combustion chamber
<£ = estimator-feedback gain matrix
M = number of actuators
TV = number of controlled modes
0 = observability matrix
P = number of sensors
R - number of residual modes
Ts = sampling period
Un = control input of nth mode
u = control input vector
Vn = measurement noise of nth mode
W - weighting factor
wn = system noise of nth mode
jc = state variables
y - sensor output vector
za - position of sensor or actuator
a, = coefficient of system characteristic polynomial
j8/ = coefficient of observer characteristic polynomial
Jln = amplitude of n th mode
7 = specific heat ratio of mixture
\l/n = normal mode shape of nth mode
(»)„ = normal frequency of nth mode

Received Dec. 16, 1988; revision received April 19, 1990; accepted
for publication April 23, 1990. Copyright © 1990 by V. Yang, A.
Sinha, and Y.-T. Fung. Published by the American Institute of Aero-
nautics and Astronautics, Inc., with permission.

* Associate Professor, Department of Mechanical Engineering.
Member AIAA.

tGraduate Student, Department of Mechanical Engineering.

Subscripts
c = control input
N = controlled mode
R = residual mode
0 = initial values

Superscripts
(') = time derivative
(") = mean quantity
C) = estimated state
( )' = fluctuation

Introduction

T HE desire to advance propulsion technology has led to
efforts to control and optimize various operating charac-

teristics of combustion systems. Principal among these is the
moderation or control of pressure oscillations (generically
known as combustion instabilities) in combustion chambers.
Heat released by combustion is the source of energy that
sustains such oscillations. There appears to be little doubt that
the most intense motions owe their existence to the mutual
coupling between unsteady combustion response and periodic
flow oscillations. As a result, the oscillations appear as the
motions of a self-excited system. The ensuing structural vibra-
tion and thrust variation may significantly compromise the
overall system performance.

Many attempts have been made to overcome combustion
instability problems or to prevent their occurrence. These
efforts usually fall into two categories: 1) making changes in
the system designs so that the coupling between combustion
response and unsteady wave motions can be minimized; and
2) making changes in dynamic energy losses so that they
exceed the energy gains from the combustion response.1
Although the effectiveness of these methods has been demon-
strated in certain situations, a number of fundamental prob-
lems remain unresolved. First, most existing techniques are
static in nature and are based on passive means. The instability
suppression mechanisms operate only for a narrow frequency
range and do not respond effectively to spatial and temporal
variations of flow conditions. Second, no unified theories
have been constructed for the optimization of the control
device. The entire system was developed primarily on a trial-
and-error basis. The experience gained from one system may
not be directly applicable to other systems. Third, and perhaps
most important, for many practical systems there is no passive
means available to control instabilities.

Although traditional passive control techniques need im-
provement and further optimization, a new technology based
on active instability control (AIC) offers radically new solu-
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tions, particularly in the regime where passive control tech-
niques are ineffective, impractical, too costly, or have reached
their design limits. The AIC methods incorporate modern
control theories and offer capabilities of estimating instanta-
neous flow conditions, calculating optimal control feedback
gains, and exerting control actions on the flowfields. Figure 1
presents a schematic of the proposed system. Important phys-
ical variables in the combustor are monitored by appropriate
sensors at representative positions. The measured signals are
then filtered and processed by a microprocessor in which the
suitable control inputs are calculated instantaneously accord-
ing to a predescribed model. Finally, the control inputs are
applied to modify the flow conditions. If designed properly,
the system may attenuate undesired oscillations within a few
cycles. Recent works on the active control of thermoacoustic
oscillations2'8 have demonstrated clearly the advantages of
this technique.

The purpose of this paper is to provide a theoretical frame-
work for designing an active control system for the suppres-
sion of combustion instabilities. In what follows, a general
analysis of unsteady motions in a combustion chamber is
given, followed by a comprehensive discussion of the con-
troller design. As a specific example, the case involving a finite
number of controlled and residual modes is addressed in detail.

Formulation
The formulation extends the previous analyses for non-

linear combustion instabilities9'10 and accommodates actively
controlled external forcing functions. To concentrate on the
construction of active control algorithms, we restrict the fol-
lowing discussion to the thermoacoustic oscillations in a com-
bustion chamber. The problem involving shear layer or vorti-
cal instabilities will be treated elsewhere. In brief, we assume
that the medium in the chamber consists of a two-phase mix-
ture. The gas phase contains inert species, reactants, and
combustion products. The liquid phase is composed of fuel
and/or oxidizer droplets, and is treated as a fluid with density
pf, mass per unit volume of the chamber. Conversion of liquid
phases to gas may occur at the rate &e due to droplet vaporiza-
tion or combustion. Its unsteady behavior can be correctly
modeled as a distribution of time-varying mass, momentum,
and energy perturbations to the gas-phase flowfield. If the
droplets are taken to be dispersed, the conservation equations
for a two-phase mixture can be written in the following form,
involving the mass-averaged properties of the flow,

dp

dvg'~£ot

(1)

(2)
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Fig. 1 Schematic diagram of active control of combustion
instabilities.

dp
— + yp V - vg = - vg • Vp + (P
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where

W = -pV -vg - V

$ = V • TV + 5Fe +

(? = (R/CV)[Q + <5QP+ V -q + 5v

(3)

(4)

(5)

(6)

and dvf= Vg—vg9 dhf= he— CjT. The subscripts g and £ stand for
the mass-averaged quantities for gas and liquid phases, respec-
tively, and p is the density of the mixture. The viscous stress
tensor and conductive heat flux vector are represented respec-
tively by TV and q; Q is the energy released by homogeneous
reactions in the gas phase. The force of interaction and energy
transfer between gas and liquid are 6/v and bQ^ respectively.

To control combustion instabilities, we may exert appropri-
ate external influence on the unsteady mass, momentum, and
energy in the chamber. Whatever physical means are devised,
control inputs must be theoretically treated as sources in the
conservation equations and their subsequent forms. There-
fore, Eqs. (1-3) are modified by adding control inputs "We, $c,
and (Pc on the right-hand sides. Their specific details depend
on the kind of control implemented, and are less important
here in developing a general framework.

A wave equation governing the unsteady motions is then
derived by decomposition of the dependent variables into
mean and time-dependent quantities. To simplify matters,
variations are ignored in the mean pressure, temperature, and
density, but the mean flow velocity is both nonzero and
nonuniform. This amounts to assuming that the mean Mach
number is relatively small, a situation commonly found in
practice. However, there may be circumstances in which
changes of mean values are important; to accommodate these
requires considerable elaboration not justified here. Thus,

p = p + p'(r,t) (7a)

vg = vg(r) + vg (r,t) (7b)

p=p+p'(r,t) (7c)

Since combustion instabilities manifest themselves by the pres-
ence of pressure oscillations, and pressure signals can be mea-
sured directly and processed at sufficiently high frequencies,
the wave equation can be most conveniently written in terms
of pressure. Now substitute Eqs. (7) in Eqs. (1-3), collect
coefficients of like powers, and rearrange the results to obtain
the following wave equation:

dt2 hc (8)

Boundary conditions are found by first taking the scalar prod-
uct of the outward normal vector with the perturbed momen-
tum Eq. (2), and then using appropriate acoustic admittance
functions along the surface of the chamber:

„. Vp' = -f-fc (9)

where hc and fc represent the influences associated with the
control inputs and are shown to be

fc = - n

(lOa)

(lOb)
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The functions h and / contain all linear and nonlinear pro-
cesses of acoustic motions, mean flow, and combustion, under
conditions with no external forcing. Their explicit expressions
are

h = -pV -(Vg

y dp'_i_ — ^
a2 dt

\_d_
+a2 dt

+ v

•Vg-V'\pv

dp'

\J K n

>s +P ^f

^ • v p ' ) + ̂ - (

~tf~dT

dv'

(lla)

(lib)

To simplify the design of a feedback control system, the
external forcing is assumed to be provided by M point actua-
tors; each actuator supplies acoustic pressure excitation uf(t)
at a predetermined position r/. Accordingly, hc takes the form

M
hc(r,t)=Yl8(r-r,)ui(t) (12)

/= 1

where d(r - r/) is the Dirac delta function. Representation of
the control source by the point actuator is justified when the
acoustic wavelength is long compared to the actuator dimen-
sion, a criterion usually met for low-frequency oscillations.
For problems in which the control source is not compact,
extension of the analysis must be made to accommodate dis-
tributed actuators.11

If the mean Mach number is small, the source terms
in Eqs. (8) and (9) can be treated as perturbations to the
system. In the limiting case, where all perturbations vanish
(h — hc = /=/c =0), the wave equation for the pressure in
classical acoustics with the boundary condition for a rigid wall
is recovered. We may take advantage of this observation by
approximating the solution of the wave equation, Eq. (8), with
a synthesis of the normal modes:

K
r) (13a)

(13b)

where the normal mode function \//n satisfies the equation

with

n =0

(14a)

(14b)

along the boundary. For longitudinal pressure oscillations in a
uniform chamber,

\l/n = cos — z (15)

Thus, the unsteady motions have structures closely related to
those of the classical acoustic modes for a chamber closed at
both ends, but with unknown time-varying amplitudes. This
appears to be the most common situation in practical propul-
sion systems. It is worth noting that selection of appropriate
normal mode functions depends intimately on the geometry of
the chamber and the boundary conditions associated with the

physical problem in question. For example, the boundary
conditions for a chamber having two open ends (such as a
Rijke tube) require that the unsteady pressure be zero at both
ends. Therefore, the appropriate mode function \l/n for that
case is sin(mrz/L).

Theoretically, the system requires an infinite number of
modes (K^oo) to complete the description of its behavior. In
practice, however, the unsteady motions can be represented
with fidelity by a truncated modal expansion, Eqs. (13), in
which K may be large but still finite. This approximation is
justified by the fact that high-frequency oscillations can be
efficiently damped out by increased viscous dissipation, and
may not actually exist physically. After substitution of
Eqs. (13) into Eq. (8), and with the aid of spatial averaging, a
set of ordinary differential equations is obtained for the time-
dependent amplitude of each mode,9'10

Un(t),

7/2,

11 = 1,2,...,* 06)

where wn(t) is the system noise. Dni and Eni are linear coeffi-
cients associated with growth rate and frequency shift, respec-
tively. The function F?L accommodates all nonlinear pro-
cesses. The control input to the nih mode can be written as

(17)

where En denotes the Euclidean norm of the mode function.
To complete the formulation, we assume that the unsteady

pressure field is monitored by P point sensors. Thus, the
output signal measured at the position ry in the chamber has
the following form:

= 1,2, (18)

where c, is a fixed real number, corresponding to the amplifi-
cation factor of the pressure signal. The sensor output equa-
tion is found by substituting Eq. (13a) into Eq. (18), with the
measurement noise modeled by a random function Vj(t):

K
r,n(t)^n(rj) + Vj(t), y = l,2, . . . , P (19)

n= 1

The system, Eqs. (16) and (19), can be described as stochas-
tic, nonlinear, and multidimensional. We treat here only the
deterministic and linear behavior of the system, i.e., wn(t) =
Vj(t) = 0 and F?L = 0. Problems involving nonlinearities are
addressed in Refs. 12 and 13.

Construction of State-Feedback Control
In this section, a digital control system based on the state-

feedback technique is developed. The goal is to determine the
control input Un(t) in such a way that the amplitude of pres-
sure oscillation rjn(t) can be controlled within a desired range
as / — oo. As discussed with Eqs. (13), the oscillatory behavior
of the combustion chamber is described by K modes. Realisti-
cally, however, it may not be practical to control all of these
modes, since the actuators and sensors may not excite or
respond to high-frequency oscillations because of hardware
limitations. In addition, the onboard computational burden
and model errors may restrict the control to a few critical
modes. If only the first N modes are controlled with N<K,
the state variables (defined here as the time-varying ampli-
tudes of acoustic modes and their time derivatives) can be
partitioned into controlled and uncontrolled (residual) parts
as follows:

X = [XN, XR] (20)
where

xN =

XR =



JAN.-FEB. 1992 CONTROL OF LONGITUDINAL COMBUSTION INSTABILITIES 69

Thus, from Eqs. (16) and (19), the state-space and output
equations can be written in the following vector form:

xN(t) = ANxN(t) + ANRxR(t) + BNu(t)

xR(t) = ApXR(t) + ARNxN(t) + BRu(t)

(21a)

(21b)

(22)

where AN, ANR and AR, ARN are system-parameter matrices
associated with the controlled and residual modes. Control
input and sensor output matrices are represented by BN, BR
and Ov, C/?, respectively, with their entries determined by the
actuator and sensor positions. The control input and sensor
output vectors are defined as

(23)

(24)

Because of the advantages of working with a modern digital
computer, it is more convenient to implement the control
system in the discrete-time domain than in the continuous-
time domain. With the output signals measured at discrete
sampling times, the system and output state-space equations in
discrete time can be written as

xN(k

xR(k

where F and G are

+ FNRxR(k) + GNu(k)

+ FRNxN(k) + GRu(k)

r f 7 * i= exp(y4/') at' \1L J o J

(25a)

(25b)

(26)

(27a)

(27b)

and Ts is the sampling period. The functions x(k) and y(k)
stand for the system states and outputs at the kih sampling
instant (t = kTs). An efficient algorithm for conversion of a
discrete-time system from its counterpart in continuous time is
given in Ref. 14.

Controller Design
The active controller must achieve the following two major

functions: 1) determination of the control input u(k) so that
the amplitude of the pressure oscillation rjn(k) will approach
zero as k — oo; and 2) accommodation of a state estimator that
receives the sensor measurement y(k) and calculates an esti-
mate of the state, xN(k).

For a state-feedback system, the control law is simply the
linear multiplication of the current state vector by a constant
control gain matrix and the feedback of the result to the
system. Since states are in general not directly available, the
control input is based on the estimated state, giving

u(k) = - (28)
Thus, the controller design comes down to selecting an appro-
priate feedback gain matrix JC that ensures system stability.

In this study, a Luenberger observer15 is employed to esti-
mate the system states in accordance with the sensor measure-
ment and the control input, as shown in Fig. 2. It has the
mathematical form

xN(k + 1) = FNxN(k) + GNu(k) + £ [ y ( k ) - CNxN(k)] (29)

where £ is the observer gain matrix. Now define the estima-
tion error vector eN(k) as

Substitution of Eqs. (25a), (26), and (29) into Eq. (30) yields

eN(k + 1) = (FN - £CN)eN(k) + (FNR - £CR)xR(k) (31)

Finally, combining Eqs. (25b), (28), (30), and (31) and
rearranging the result gives three coupled equations that de-
scribe the overall system behavior:

xN(k = (FN - (GNX)eN(k) + FNRxR(k)
(32)

eN(k + 1) = (FN - £CN)eN(k) + (FNR - £CR)xR(k) (33)

xR(k + 1) = (FRN - GRX)xN(k) + (GRK)eN(k) + FpjcR(ky
(34)

They can be conveniently recast to the matrix form:

xN(k
eN(k
xR(k

FN —
0

- GR JC GR

FNR

R — £CR

FR

xN(k)
eN(k)
xR(k)

(35)

Obviously, in order to ensure system stability and accuracy of
state estimation, the eigenvalues of Eq. (35) must be located
inside the unit circle in the z plane.

For many practical propulsion devices involving distributed
combustion, the influence of linear coupling terms on the
system behavior appears to be quite weak,16'17 since they repre-
sent fast-varying oscillations and vanish after appropriate
time-averaging of the equations of motion. Almost identical
results are obtained for linear stability characteristics no mat-
ter when the acoustic modes are treated simultaneously or
independently. Therefore, to first approximation, we may
ignore the coupling between controlled and residual modes in
designing an active controller. Furthermore, the contribution
of residual modes CR in the sensor measurement can be either
filtered out through a comb filter18 or minimized by a judi-
cious choice of sensor positions. With FNR, FRN, and CR set to
be zero, the system of Eq. (35) can be simplified as

eN(k
0

0
— GR JC

FN- £CN 0
G/?3C FR

xN(k)
eN(k)
xR(k)

(36)

The characteristic equation of the system of Eq. (36) is

det[z/ - FN + GN3C] . det[z/ - FN + £CN] - det[z/ - FR] = 0

(37)

PLANT

) + BNu(t)
NxN(t) + BRu(t)

= CNxN(t) + CRKR(t)

= xN(k) - xN(k) (30)
OBSERVER

Fig. 2 Structure of the digital control system.
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Equation (36) can be regarded as a small variation from the
actual system, with its eigenvalues determined by the indi-
vidual matrices (FN - GN3£), (FN - £CN), and FR. Since the
uncoupled residual modes are usually stable, the matrices 3C
and <£ must be chosen to have the eigenvalues of (FN - GN3£)
and (FN - £CN) located inside the unit circle in the z plane
for stability. Hence, it is straightforward to guarantee the
stability of the system, Eq. (36), by a suitable controller de-
sign. The structure of Eq. (36) also leads to the well-known
separation principle that implies that JC and <£ can be deter-
mined separately.

Owing to the great simplicity of the separation principle and
the relatively less significance of the off-diagonal terms in the
model Eq. (16) and of the elements of CR, it is proposed to
first design the controller according to the approximated sys-
tem, Eq. (36), and then implement the controller into the
original system, Eq. (35). Finally, the validity of this approach
will be corroborated by direct examination of the stability of
the actual system.

Determination of Control and Observer Gain Matrices
For a closed-loop system, the controller and observer char-

acteristic equations can be written respectively as

- FN

detfe/ - FN + £CN] = z2N +

(38)

(39)

with coefficients a/ and /}/ determined by desired eigenvalues
of the matrices (FN - GN JC) and (FN - £CN).

To ensure system stability and accuracy of state estimation,
the gain matrices JC and £ must be determined in such a way
that the eigenvalues of (FN - GNJC) and (FN - £CN) are lo-
cated inside the unit circle in the z plane, provided conditions
for controllability and observability are fulfilled.14 This re-
quires the following controllability and observability matrices
to be nonsingular:

FNGN '

0 =

(40)

(41)

For problems involving only a single input and a single
output, the controller and observer gain vectors can be evalu-
ated according to Ackermann's formula19:

a somewhat faster decay rate for the estimated error (approx-
imately a factor of four), so that the estimated states will
approach true states in a relatively short time, and the dynam-
ics of the closed-loop system will be governed primarily by the
controller poles.

Locations of Actuator and Sensor
The locations of actuators must be selected carefully be-

cause of their direct influence on the effectiveness of control
actions. For longitudinal oscillations, the coefficient of an
input for the nih mode is proportional to i/^fo), m which za
stands for the actuator position. If the forcing is exerted at a
pressure nodal point at which the function \j/n vanishes, obvi-
ously it cannot modify the nth mode of the flowfield. There-
fore, the coefficient of each input in Eq. (17) should be as
large as possible for the controlled modes to enhance the
system controllability.

On the other hand, the input signal that drives the con-
trolled states to zero may also excite the residual modes,
a phenomenon commonly known as control spillover. Thus,
the coefficient of each input for the residual modes must be
minimized to circumvent this problem. In order to increase
system controllability and alleviate control spillover, the actu-
ator location za is chosen to minimize the following objective
function:

n = N+ 1
(44)

where WN and WR are the weighting factors for the controlled
and residual modes, respectively. Figure 3 shows the depen-
dence of the objective function J on the actuator location za,
with only two controlled and two residual modes taken into
account. If the influence of the residual modes is ignored (i.e.,

2.0

WN=0.0, WR=1.0
W.N=0.25, WR=0.75
WN=0.50, WR=0.50

WN=0.75, WR=0.25
WN=1.0, WR=G.O

= [0 ••• 0 (42)

AXIAL POSITION, z/L

Fig. 3 Objective function for selection of actuator and sensor loca-
tions (two controlled and two residual modes).

(43)

where

a2NI

For multiple inputs and outputs, algorithms are available to
determine JC and <£.20 In general, the closed-loop system poles
are chosen so that the pressure oscillations can be suppressed
effectively with a minimum possible amount of energy used
for the control input. The observer poles are then specified for

0.3-

0 .2-

co
O

0. 1-

0.0-

A \A/N=0.25, WR=0.75
O WN=0.50, WR=0.50
D WN=0.75, \A/R=0.25

• L/2(N+1)

L/2(N+R)

NUMBER OF MODES, N (R=N)

Fig. 4 Optimal locations of sensors and actuators for various num-
bers of modes (TV = /?).
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WR = 0), the most effective position for the actuator is the
head end of the chamber and / = 0 at that point. However,
this location may give rise to a severe control spillover prob-
lem. For nonzero values of WR in Fig. 3, the optimal actuator
location falls between the first nodal points of the lowest and
highest residual modes, i.e., L/(2N + 2R)<za<L/(2N + 2).
Figure 4 shows the optimal actuator locations for various
controlled and residual modes, in which N = R. The result
matches closely the curve za = L/(2N + 2R).

Equation (19) also suggests that the minimization of Eq. (44)
leads to an increase in the value of each element of CN and a
reduction in that of CR. This implies that the system observ-
ability for the controlled modes will be enhanced and the
observation spillover problem reduced. The optimal sensor
location is accordingly selected to be the same as the actuator
location.

Illustrative Examples and Discussions
The state-feedback control algorithm described in the pre-

ceding sections can be implemented effectively to suppress
undesired thermal-acoustic instabilities in combustion cham-
bers. To demonstrate its performance, a series of numerical

Table 1 System parameters

Dni

n = 1
n =2
/! =3
n=4

/ = 1
-0.01

0.01
-0.01

0.02

/ = 2
0.007
0.1
0.01

- 0.005

i = 3
- 0.001

0.007
0.75
0.01

/ = 4
0.007

- 0.001
0.008
1.50

1= 1 / = 3 / = 4

n = 1
n =2
n=3
n =4

- 0.005
- 0.0025
- 0.005
0.01

- 0.005
-0.015
0.0
0.02

0.0025
0.01

-0.02
0.02

0.0016
0.01
0.02

- 0.025

Table 2 Open-loop system poles

Continuous time Discrete time
Mode 1
Mode 2
Mode 3
Mode 4

0.00499 ±j 0.99750
-0.04998 ±y 1.99560
-0.37499 ±y 2.97309
-0.75003 ±j 3. 92585

1.00005 ±7 0.00998
0.99950 ±y0.01996
0.99625 ±y 0.02973
0.99216 ±y 0.03904

Table 3a Closed-loop system poles (case 1)

Pole 1
Pole 2
Pole 3
Pole 4
Pole 5
Pole 6

Approximated21

0.99985 ±j 0.00997
0.99950 ±yO.Oi996
0.99625 ±y 0.02973
0.99216 ±y 0.03904
0.99804 ±y 0.00397
0.99700 ±y 0.00208

Actual5

0.99985 ±y 0.00997
0.99950 ±y0.01996
0.99625 ±y 0.02973
0.99216 ±y 0.03904
0.99804 ±y0.00397
0.99700 ±y 0.00208

Based on the separation principle, Eq. (36).
Based on the complete system, Eq. (35).

Table 3b Closed-loop system poles (case 2)

Approximated3 Actual5

Pole 1 0.99955 ±7*0.00997
Pole 2 0.99950 ±7*0.01996
Pole 3 0.99625 ±7*0.02973
Pole 4 0.99216 ±7*0.03904
Pole 5 0.99804 ±7*0.00397
Pole 6 0.99700 ±y0.00208

0.99955 ±7*0.00997
0.99950 ±7*0.01996
0.99625 ±y*0.02973
0.99216 ±7*0.03904
0.99804 ±7*0.00397
0.99700 ±70.00208

simulations were conducted for systems with distributed com-
bustion. The unsteady combustion process was modeled using
a linear pressure-coupled response function. As an example,
we consider here the problem involving two controlled and
two residual modes of longitudinal oscillations. The normal-
ized natural radian frequency of the fundamental mode is
taken to be unity, and the linear parameters Dni and Eni in
Eq. (16) are given in Table 1.

These coefficients are representative of a typical situation
observed in many practical combustion devices such as rocket
motors.12 The overall open-loop system eigenvalues in both
continuous and discrete time are summarized in Table 2, in
which each pole represents the corresponding eigenvalue of
that mode. Note that the first mode is linearly unstable with a
growth constant of 0.005, and the second mode is linearly
stable with a decay coefficient 10 times larger than that of the
first mode.

The controller design is based on the dynamics of the con-
trolled modes only, i.e., on the basis of Eqs. (25a) and (26),
with FNR and CR taken to be zero. In addition, only on£ set of
sensor and actuator is used to estimate the states and subse-
quently provide the stabilizing control input. The design pro-
cedure involves four steps. First, the actuator and sensor
locations are selected to be at za - L/1.5 in accordance with
Figs. 3 and 4, with no amplification of the measured pressure
signal. Second, the sampling period is set at 1 % of the period
of the fundamental mode, i.e., Ts = 0.01. For this sampling
period, it has been verified by evaluating the determinants of
the matrices C and 0 that the system is observable and con-
trollable. With only the first four modes included in the anal-
ysis, it also satisfies the Nyquist sampling criterion.14 Third,
the feedback gain matrix 3C is chosen by placing the closed-
loop poles inside the unit circle in the z plane. In general, the
higher the distance between the open-loop and closed-loop
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Fig. 5 Time traces of oscillations of controlled modes at the chamber
head end for case 1 («i = 1, coi = 2).
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Fig. 6 Time traces of oscillations of residual modes at the chamber
head end for case 1 (033 = 3, 404 = 4).
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poles, the greater the required control input energy. There-
for e» the stable open-loop poles remain unchanged, and the
unstable poles are relocated slightly inside the unit circle by
moving them radially toward the origin of the z plane. Finally,
in order to provide a good overall system performance, the
observer poles are taken to have a decay rate for the estima-
tion error about four times faster than that for the controlled
modes.14

Two controller designs, case 1 and case 2, were carried out,
with the unstable open-loop poles relocated to positions hav-
ing radii of 0.9399 and 6.9996 in the z plane, respectively (see
Table 3, where poles § Md 6 are associated with the estimation
errors for modes 1 tmd 2, respectively). Because the observa-
tion spillover and the linear coupling between the controlled
and residual modes were ignored in the controller design, the
eigenvalues based on the approximated system, Eq. (36), were
expected to be slightly different from those of the actual
system, Eq. (35). However, the deviation is quite small, and
has little influence on the entire system performance. For this
particular case, these eigenvalues are exactly the same within
five digits. Figure 5 shbws the calculated time histories of the
controlled modes for case 1. A small initial disturbance grows
exponentially for some time until its amplitude reaches a pre-
set threshold value at which the controller is activated to
suppress oscillations. The system functions quite effectively,
and eliminates undesired oscillations within a few cycles. Fig-
ure 6 shows the time traces df oscillations of residual modes.
High-frequency disturbances are initiated at t = 0 due to the
coupling with controlled modes, and then decay rapidly when
the system becomes stable. The estimation error eN was also
calculated, giving the results shown in Fig. 7. The observer is
capable of estimating the states closely, except during the
short starting transient period due to errors associated with
estimation of initial states.
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Fig. 7 Time traces of estimation errors for case 1.
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Fig. 8 Time traces of the control input u(t) and sensor output y ( t )
for case 1.
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Fig. 9 Time traces of oscillations of controlled modes at the chamber
head end for case 2 (<oi = 1, a>2 — 2).
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Fig. 10 Time trace of the control input u(t) and sensor output y ( t )
for case 2.

One of the fundamental issues in the design of an active
control system is the tradeoff between the energy of unsteady
motions and the energy required to eliminate them. To see
this, the input pressure u(t) at the actuator location was
calculated. Figure 8 indicates that the system needs only a
small amount of energy in the initial stage to control the
oscillations. The maximum input pressure that occurred im-
mediately after the actuation of the controller is less than 5%
of the maximum pressure oscillation.

As discussed previously, the closed-loop pole locations af-
fect significantly the overall system characteristics. Their in-
fluence on the controller performance appears usually in two
aspects: the amplitude of control inputs, and the time duration
required to suppress oscillations. In general, a decrease in the
magnitude of the closed-loop poles reduces the control dura-
tion but increases the maximum amplitude of the control
input. This means that a faster decay of oscillation is associ-
ated with a higher demand for control input. For the purpose
of illustration, simulation results are also presented for case 2,
in which the unstable open-loop poles are shifted to a radial
position of 0.9996 from the origin in the z plane. Figures 9 and
10 show the calculated time traces of the controlled oscilla-
tions and the input pressure, respectively. Compared with case
1, the actuator can indeed eliminate disturbance within a much
shorter interval (i.e., 15 cycles in this example), but the maxi-
mum amplitude of the pressure input increases from 5 to 12%
of the threshold value. Since these are the amplitude and
response times of the control inputs, and to a much lesser
extent the control duration, which limit the applicability of an
active controller in practical combustion systems, the unstable
open-loop poles should be relocated as close to the unit circle
in the z plane as possible.

Concluding Remarks
A linear theory has been developed to study the active

control of longitudinal pressure oscillations in a combustion
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chamber. The control actions were provided by a number of
point actuators, with the state of the system measured at a few
representative locations. As a specific example, the case in-
volving two controlled and two residual modes was studied in
depth. The control and observation spillover phenomena in-
duced by the motions of residual modes were clearly demon-
strated.

Although this work offers a formal treatment of the state-
feedback control of combustion instabilities, several aspects
require extensive attention in the future. First, the system
parameters of each oscillatory mode were treated as known
quantities in advance. For many practical combustion systems
involving complex physicochemical processes, these parame-
ters may not be determined accurately and economically.
Therefore, a design using an adaptive controller that can learn
and improve its performance as it operates may provide a
realistic solution. Second, we have dealt only with the linear
control of longitudinal pressure oscillations.. Extension to
nonlinear analysis is required in order for many important
nonlinear phenomena (e.g., triggering of oscillations and limit
cycles) to be studied. Third, the present model assumes time-
invariant mean flpwfields and employs a modal expansion of
oscillatory fields. Thus, it excludes the existence of hydrody-
namic instabilities, in particular shear layer and vortical insta-
bilities. Extension should be made to accommodate all three
classes of unsteady flow motions: acoustic, entropy, and vorti-
cal modes. This is likely a key issue in the entire problem.
Consequently, a more realistic and complete representation of
actual systems can be achieved.
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